Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(8): e18676, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37554841

RESUMO

The use of nanomaterials as a means of recovering heavy and light oil from petroleum reservoirs has increased over the preceding twenty years. Most researchers have found that injecting a nanoparticle dispersion (nanofluids) has led to good results and increased the amount of oil that can be recovered. In this research, we aim to imitate the three-dimensional hexagonal prism in the existence of SiO2 and Al2O3 nanoparticles for better oil recovery. Porosity (0.1≤φ≤0.4), mass flow rate (0.05mL/min≤Q≤0.05ml/min), nanoparticle concentration (0.01≤ψ≤0.04), and the effect of relative permeability (kr) on oil and water saturation in the presence of gravity under different time durations are all investigated. The result obtained for the model is verified with existing experimental data. The results indicated that the infulence of nanoparticle volume fraction (VF) is significant in enhancing the oil recovery rate. It is also observed that at low porosity values the oil recovery is maximum. The maximum oil recovery is attained at low values of mass flow rate in the 3D hexagonal prism in the presence of silicon and aluminium nanoparticles It is also observed that the use of SiO2 gives a better oil recovery rate than Al2O3. It is also observed that maximum oil recovery is obtained at 99% at a flow rate of 0.05 mL/min in the presence of silicon injection.

2.
Materials (Basel) ; 16(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37570118

RESUMO

Two-phase Darcy's law is a well-known mathematical model used in the petrochemical industry. It predicts the fluid flow in reservoirs and can be used to optimize oil production using recent technology. Indeed, various models have been proposed for predicting oil recovery using injected nanofluids (NFs). Among them, numerical modeling is attracting the attention of scientists and engineers owing to its ability to modify the thermophysical properties of NFs such as density, viscosity, and thermal conductivity. Herein, a new model for simulating NF injection into a 3D porous media for enhanced oil recovery (EOR) is investigated. This model has been developed for its ability to predict oil recovery across a wide range of temperatures and volume fractions (VFs). For the first time, the model can examine the changes and effects of thermophysical properties on the EOR process based on empirical correlations depending on two variables, VF and inlet temperature. The governing equations obtained from Darcy's law, mass conservation, concentration, and energy equations were numerically evaluated using a time-dependent finite-element method. The findings indicated that optimizing the temperature and VF could significantly improve the thermophysical properties of the EOR process. We observed that increasing the inlet temperature (353.15 K) and volume fraction (4%) resulted in better oil displacement, improved sweep efficiency, and enhanced mobility of the NF. The oil recovery decreased when the VF (>4%) and temperature exceeded 353.15 K. Remarkably, the optimal VF and inlet temperature for changing the thermophysical properties increased the oil production by 30%.

3.
Materials (Basel) ; 16(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37297145

RESUMO

Enhanced oil recovery (EOR) has been offered as an alternative to declining crude oil production. EOR using nanotechnology is one of the most innovative trends in the petroleum industry. In order to determine the maximum oil recovery, the effect of a 3D rectangular prism shape is numerically investigated in this study. Using ANSYS Fluent software(2022R1), we develop a two-phase mathematical model based on 3D geometry. This research examines the following parameters: flow rate Q = 0.01-0.05 mL/min, volume fractions = 0.01-0.04%, and the effect of nanomaterials on relative permeability. The result of the model is verified with published studies. In this study, the finite volume method is used to simulate the problem, and we run simulations at different flow rates while keeping other variables constant. The findings show that the nanomaterials have an important effect on water and oil permeability, increasing oil mobility and lowering IFT, which increases the recovery process. Additionally, it has been noted that a reduction in the flow rate improves oil recovery. Maximum oil recovery was attained at a 0.05 mL/min flow rate. Based on the findings, it is also demonstrated that SiO2 provides better oil recovery compared to Al2O3. When the volume fraction concentration increases, oil recovery ultimately increases.

4.
Nanomaterials (Basel) ; 12(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35335824

RESUMO

It is necessary to sustain energy from an external reservoir or employ advanced technologies to enhance oil recovery. A greater volume of oil may be recovered by employing nanofluid flooding. In this study, we investigated oil extraction in a two-phase incompressible fluid in a two-dimensional rectangular porous homogenous area filled with oil and having no capillary pressure. The governing equations that were derived from Darcy's law and the mass conservation law were solved using the finite element method. Compared to earlier research, a more efficient numerical model is proposed here. The proposed model allows for the cost-effective study of heating-based inlet fluid in enhanced oil recovery (EOR) and uses the empirical correlations of the nanofluid thermophysical properties on the relative permeability equations of the nanofluid and oil, so it is more accurate than other models to determine the higher recovery factor of one nanoparticle compared to other nanoparticles. Next, the effect of nanoparticle volume fraction on flooding was evaluated. EOR via nanofluid flooding processes and the effect of the intake temperatures (300 and 350 K) were also simulated by comparing three nanoparticles: SiO2, Al2O3, and CuO. The results show that adding nanoparticles (<5 v%) to a base fluid enhanced the oil recovery by more than 20%. Increasing the inlet temperature enhanced the oil recovery due to changes in viscosity and density of oil. Increasing the relative permeability of nanofluid while simultaneously reducing the relative permeability of oil due to the presence of nanoparticles was the primary reason for EOR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA